
www.manaraa.com

Master of Science in Computer Science and Engineering Thesis:
Fast Flexible Architectures for Secure Communication

Lisa Wu
Advanced Computer Architecture Laboratory

University of Michigan
Ann Arbor, MI 48109
wul@eecs.umich.edu

mailto:wul@eecs.umich.edu

www.manaraa.com

Table of Contents

Acknowledgement .. 5
Abstract . 7
Chapter 1 Introduction.. 9

Section 1.1 Cryptography ... 9
Section 1.2 Contribution of This Thesis .. .11

Chapter 2 The Nature of Cryptography13
Chapter 3 Cipher Kernel Analysis .. .17

Section 3.1 Cipher Analysis Tools.. .17
Section 3.2 Cipher Throughput Analysis .. .18
Section 3.3 Bottleneck Analysis .. .19
Section 3.4 Cipher Relative Run Time Cost.. .21
Section 3.5 Cipher Kernel Characterization .. .22

Chapter 4 Architectural Extensions.. .25
Chapter 5 CryptoManiac Architecture.. .29

Section 5.1 System Architecture .. .29
Section 5.2 Processing Element Architecture .. .31
Section 5.3 Instruction Set Architecture .. .32
Section 5.4 Design Methodology33
Section 5.5 The Super Optimizer .. .35
Section 5.6 Physical Design Characteristics.. .37

Chapter 6 Performance Analysis .. .39
Section 6.1 Performance Analysis of ISA Extensions .. .39
Section 6.2 Performance Analysis of CryptoManiac.. .42
Section 6.3 System Analysis of CryptoManiac .. .44

Chapter 7 Related Work... .47
Chapter 8 Conclusions and Future Work... .49
References .. .51

www.manaraa.com

Lisa Wu Page 5 4/22/01

Acknowledgement

Credit for much of the work described in this thesis belongs to my advisor, Professor Todd Austin, for

his insight, guidance, and patience. He provided for an excellent research environment, left me enough

freedom to do things the way I thought they should be done, and was always available to discuss ideas

and problems.

I would also like to thank my committee members Professor Steve Reinhardt and Professor Gary

Tyson for reviewing this document and serving on the defense committee.

Other people that have worked on the CryptoManiac project include Chris Weaver for hardware

design and synthesis support, Jerome Burke and John McDonald for earlier versions of ISA extensions

code modifications.

www.manaraa.com

Lisa Wu Page 7 4/22/01

Abstract

The growth of the Internet as a vehicle for secure communication and electronic commerce has

brought cryptographic processing performance to the forefront of high throughput system design.

Cryptography provides the mechanisms necessary to implement accountability, accuracy, and

confidentiality in communication. This trend will be further underscored with the widespread adoption of

secure protocols such as secure IP (IPSEC) and virtual private networks (VPNs). Efficient cryptographic

processing, therefore, will become increasingly vital to good system performance.

In this thesis, we explore hardware/software-design techniques to improve the performance of secret-

key cipher algorithms. We introduce new instructions that improve the efficiency of the analyzed

algorithms, and further introduce the CryptoManiac processor, a fast and flexible co-processor for

cryptographic workloads.

Our first approach is to add instruction set support for fast substitutions, general permutations,

rotates, and modular arithmetic. Performance analysis of the optimized ciphers shows an overall speedup

of 59% over a baseline machine with rotate instructions and 74% speedup over a baseline without

rotates. Even higher speedups are demonstrated with optimized substitutions (SBOX’s) and additional

functional unit resources. Our analyses of the original and optimized algorithms suggest future directions

for the design of high-performance programmable cryptographic processors.

To follow up on these suggestions, our second approach is to design an efficient piece of hardware

that runs cryptographic algorithms. We present analysis of a 0.25um physical design that runs the

standard Rijndael cipher algorithm 2.25 times faster than a 600MHz Alpha 21264 processor. Moreover,

our implementation requires 1/100 th the area and power in the same technology. We demonstrate that the

performance of our design rivals a state-of-the-art dedicated hardware implementation of the 3DES

(triple DES) algorithm, while retaining the flexibility to simultaneously support multiple cipher

algorithms. Finally, we define a scalable system architecture that combines CryptoManiac processing

elements to exploit inter-session and inter-packet parallelism available in many communication

protocols. Using I/O traces and detailed timing simulation, we show that chip multiprocessor

configurations can effectively service high throughput applications including secure web and disk I/O

processing.

www.manaraa.com

Lisa Wu Page 9 4/22/01

Chapter 1 Introduction

Cryptography provides the mechanisms necessary to provide accountability, accuracy and

confidentiality in inherently public communication mediums such as the Internet. The widespread

adoption of the Internet as a trusted medium for communication and commerce has made cryptography an

essential component of modern information systems. The trend towards virtual private networks (VPNs)

[15] and secure IP (IPSEC) [3] will further emphasize the significance of cryptographic processing among

all types of communication. Security-related processing can consume as much as 95 percent of a server’s

processing capacity [25]. As demands for secure communication bandwidth grow, efficient cryptographic

processing will become increasingly critical to good system performance.

Section 1.1 Cryptography

Cryptography is a Greek word that literally means the art of writing secrets [21]. In practice,

cryptography is the task of transforming information into a form that is incomprehensible, but at the same

time allows the intended recipient to retrieve the original information using a secret key. Cryptographic

algorithms (or ciphers, as they are often called) are special programs designed to protect sensitive

information on public communication networks. During encryption, ciphers transform the original

plaintext message into unintelligible ciphertext. Decryption is the process of retrieving plaintext from

ciphertext. Two forms of cryptography are commonly used in information systems today: secret-key

ciphers and public-key ciphers. Secret-key ciphers (sometimes referred to as symmetric-key ciphers) use a

single private key to encrypt and decrypt as illustrated in Figure 1. Public-key ciphers (or asymmetric-key

ciphers) use a well-known public key to encrypt and require a different private key to decrypt. The

process may also be reversed to produce what is known as a digital signature. Digital signatures

authenticate the sender. Since only the person holding the private key knows its value, only that person

can create a digital signature that others can decrypt with the public key.

Figure 1. Public-Key and Secret-Key Ciphers.

F(x) G(x)

G(x) G(x)

Public-Key Cipher

Secret-Key Cipher

plaintext ciphertext plaintext

plaintext ciphertext plaintext

public key private key

private key private key

www.manaraa.com

Lisa Wu Page 10 4/22/01

Public-key ciphers have the advantage of being able to establish a secure communication channel

without an unsafe exchange of keys. Private-key ciphers, on the other hand, require a shared private key

before secure communication can commence. The distribution of the shared private key is the primary

obstacle in making secret-key ciphers secure. Strong public-key ciphers are computationally very

expensive. Public-key encryption requires exponentiation and modular multiplication of large multi-

precision numbers of 1024 bits in length or more. Secret-key ciphers have the advantage of running as

much as 1000 times faster than comparable public-key ciphers [30]. To maximize security and

performance, most secure protocols use both forms of cryptography. Public key encryption is used at the

start of a session to authenticate communicating parties and to securely distribute a shared secret key. The

remainder of the session employs efficient secret key algorithms using the private key exchanged during

authentication. We refer this type of key management as public-secret key cryptography. An example of a

system that uses this particular session management strategy is the Secure Sockets Layer (SSL) protocol

[39].

SSL is a standard secure protocol that provides secure communication between web servers and web

clients. It is supported by most popular web browsers [25]. SSL extends TCP/IP to support secure

encrypted connections with authentication of senders and receivers. The protocol is used by web servers

to establish secure HTTP connections. For very short sessions, fast public-key cipher processing is critical

for high transaction throughput. For longer sessions, private-key cipher performance becomes more

important. Figure 2 illustrates the SSL run-time breakdown by server processing type. Data shown is

collected from a heavily loaded web server running on an iA32 platform [29]. Clearly, for very short

SSL Session Length (bytes)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1k 2k 4k 8k 16k 32k

Publ ic
Other

Private

average size of a
single web object (21k)

Figure 2. SSL Protocol Relative Contribution
to Run Time.

www.manaraa.com

Lisa Wu Page 11 4/22/01

sessions fast public-key cipher processing is crucial for high transaction throughput. A recent study [2]

found that the average size of a web object was 21k bytes. For a 32k session length, secret-key processing

overheads rise to 48% of overall run time. Given that a single session will be composed of many web

objects, cryptographic processing will be quickly dominated by secret-key cipher execution. To further

reduce the cost of public-key authentication, SSL allows the use of a session cache, where authenticated

private keys are held and can later be reused when users reconnect to view other web pages. As such, the

focus of our design effort is on improving secret-key cipher performance.

Section 1.2 Contribution of This Thesis

Cryptography can be implemented with software routines, directly in hardware, or a combination of

both. A software only approach is the lowest-cost solution but with accordingly lower performance. An

example of the hardware-only approach is the IDEA engine [23]. It is targeted specifically at the efficient

execution of the IDEA cipher and renders excellent performance. However, its performance is at the

expense of flexibility as the hardware cannot be used for other cryptographic processing tasks. In this

thesis, we present two hardware/software mixed solutions for efficient cryptographic processing.

The first hardware/software mixed approach is to add architectural extensions that streamline cipher

kernel processing. We first examine the execution of eight widely known strong secret-key ciphers. We

analyze their performance on detailed microarchitectural models, where we are able to clearly show their

performance and the bottlenecks that slow their progress. Armed with these insights, we propose a

general set of instructions that from which all these kernels can benefit. The technique improved

performance of secret-key ciphers through fast substitutions, general bit permutations, rotates, and

modular arithmetic. We re-code the ciphers using these new instructions and then examine their

performance on microarchitectural models with varying levels of support for fast cryptography.

We further extended this approach through the design of a fast and flexible cryptographic co-

processor. Our design, called the CryptoManiac, addresses the primary bottleneck in secret-key ciphers,

namely efficiency, through the application of an efficient VLIW architecture with a well-matched

instruction set and functional unit resources. The programmable feature supports many secret-key ciphers,

in contrast to the IDEA engine. We hand-optimized the eight kernels and then validated the results using a

super optimizer as the scheduler with varying design parameters. By combining CryptoManiac processors

into parallel configurations, we are able to scale cryptographic performance for applications with inter-

session and inter-packet parallelism. We detail the design and implementation of the CryptoManiac

processor and analyze its performance using architectural and physical design models.

My research contribution to this work was the design, implementation, and evaluation of the

CryptoManaic co-processor; this work was published in [42]. Specifically, I contributed the following: i)

design and implementation of the CryptoManiac functional units, ii) area, timing, power, and

www.manaraa.com

Lisa Wu Page 12 4/22/01

performance analyses of the CryptoManiac, iii) experiments for design parameter decisions such as the

bypass logic of the CryptoManiac, the width of the VLIW co-processor, and how the instruction

combining capability affects the design of the hardware, iv) design and implementation of the super

optimizer, v) validation and instruction combination studies done by using the super optimizer, and vi) the

implications of cryptographic algorithms mixing arithmetic and logical instructions.

We discuss the operations of strong secret-key ciphers by carefully examining the Twofish cipher in

Chapter 2. In Chapter 3, we present our experimental framework and analyses of cipher kernel

characterizations, operations, and bottlenecks to gain insight as to how to build efficient designs. In

Chapter 4, we introduce the architectural extensions to support fast cryptographic processing. In Chapter

5, we present the CryptoManiac design, detailing the processor architecture, the system architecture, and

the instruction set. We then examine performance results in Chapter 6. In the final sections, we discuss

related work, summarize our findings, and make suggestions for future work.

www.manaraa.com

Lisa Wu Page 13 4/22/01

Chapter 2 The Nature of Cryptography

Figure 3 shows the kernel of the Twofish cipher, developed by Counterpane Systems [35]. It is a

candidate for the Advanced Encryption Standard (AES) [1], the US government’s effort to develop a new

strong encryption standard. Twofish is a particularly good example to look at because it captures many of

the operations that ciphers employ. The code shown in Figure 3 is the encryption kernel, run on one 128-

bit block of data to encrypt it into a 128-bit ciphertext block using a 128-bit key value. The Twofish

decryption kernel is nearly identical except the order of the operations is reversed and inverted (e.g.,

rotate left becomes rotate right).

The cipher algorithm first reads the input data, XOR’s it with the 128-bit intermediate vector (IV) and

key, and then enters the encryption loop. The encryption loop executes 16 iterations (or rounds as they are

called in cryptography literature) to produce 128 bits of ciphertext. The ciphertext is then once again

XOR’ed with the key and stored to the intermediate vector and the output buffer.

Within the kernel loop, the cipher algorithm employs a series of reversible operations to implement a

process called diffusion. Diffusion works to randomly impress upon each of the output bits some

information from each of the input bits. The direction of the diffusion process is set by the private key.

The more seemingly random and complete the diffusion process is, the more difficult it is to recreate the

plaintext without the key value. With large keys and good diffusion, the ciphertext is extremely resistant

to attackers. Quantitatively, a strong encryption algorithm is one where any change in the input results in

x[0] = input[0] ˆ key[0] ˆ IV[0];
x[1] = input[1] ˆ key[1] ˆ IV[1];
x[2] = input[2] ˆ key[2] ˆ IV[2];
x[3] = input[3] ˆ key[3] ˆ IV[3];

for (ii=15, jj=0; ii >= 0; ii--, jjˆ=2) {
t0 = (sbox1[x[jj][0]] ˆ sbox2[x[jj][1]]

ˆ sbox3[x[jj][2]] ˆ sbox4[x[jj][3]]);
t1 = (sbox1[x[jjˆ1][3]] ˆ sbox2[x[jjˆ1][0]]

ˆ sbox3[x[jjˆ1][1]] ˆ sbox4[x[jjˆ1][2]]);
x[jjˆ3] = x[jjˆ3] <<< 1;
x[jjˆ2] = x[jjˆ2]ˆ(t0+t1+key[ii<<1]);
x[jjˆ3] = x[jjˆ3]ˆ(t0+(t1<<1)+key[(ii<<1)+1]);
x[jjˆ2] = x[jjˆ2] >>> 1;

}

output[0] = IV[0] = x[2] ˆ key[0];
output[1] = IV[0] = x[3] ˆ key[1];
output[2] = IV[0] = x[0] ˆ key[2];
output[3] = IV[0] = x[1] ˆ key[3];

Figure 3. The Twofish Cipher Kernel. All variables are
32-bit integers. Rotates are indicated by <<< and >>>.

www.manaraa.com

Lisa Wu Page 14 4/22/01

a random perturbation of each output bit with probability 50%. Moreover, any change to the key value

should have an equally dramatic effect on the ciphertext produced.

The process of diffusion has two important implications to the underlying machine architecture. First,

diffusing input bits is computationally expensive on modern microprocessors. Most algorithms run their

kernel loop at least 16 times on each block of data encrypted, successively mixing the data more and more

on each round. The second implication is that cipher kernels have little parallelism. Parallelism in the

cipher (especially coarse-grained parallelism) would imply that some aspect of the computation does not

affect later ciphertext results, which would in turn imply that the cipher algorithm was not a strong one!

While we did find a small level of ILP in cipher kernels, the process of making the kernels run fast

primarily entails improving their execution efficiency on the underlying microarchitecture. The

intermediate vector IV ensures that the diffusion process propagates to all remaining ciphertext in the

communication stream. The ciphertext value of encrypted block i is first XOR’ed with plaintext block i+1

before it is encrypted. The end result is that the cipher kernel execution is a very long recurrence with

virtually no parallelism.

The kernel loop also exhibits a mixing of arithmetic and logical operations. Kernels that contain only

arithmetic or only logical operations can easily be attacked using linear analysis. The implication of

mixing these instructions with sequence as an ADD followed by a XOR or an AND followed by an ADD

is to make the cipher resilient to attacks.

To ensure that the ciphertext can be decrypted back to the plaintext, the cipher kernel must employ a

series of key-parameterized reversible operations. The Twofish algorithm demonstrates a number of

these:

Rotates Rotates are easily reversible (simply rotate the same distance in the opposite direction).

Rotates also have good diffusion properties, impressing each bit onto another bit of the output.

Modular Addition Modular arithmetic, if based on a power-of-two base, is cheap, fast, and has

relatively good diffusion properties. Moreover, it is easily inverted using modular subtraction or modular

addition with the two’s-complement of the addend. XOR operations, which are modular additions in base

2, are easily reversible by XOR’ing the same value onto the resulting ciphertext.

Substitutions Table-based substitutions can be used to quickly implement any key-

parameterized function. An SBOX is a table of values indexed with plaintext (usually byte) that produces

the result of the key-parameterized function. SBOX’s are easily reversible by inverting the table, i.e.,

indices become values and values become indices.

In addition, other algorithms often employ two other mechanisms, modular multiplication and XBOXs.

www.manaraa.com

Lisa Wu Page 15 4/22/01

Modular Multiplication Modular multiplication has been shown to have particularly good

diffusion properties [23], and the operation can be easily reversed with modular multiplication of the

modular inverse of the multiplicand. If the multiplicand is part of the key, all divides (which are typically

much more expensive) can be confined to the cipher setup code. If the modulus of the operation is a

power-of-two (as in RC6), it can be efficiently implemented using existing multiply instructions. A few

algorithms (most notably IDEA) use a modulus of a 2N+1 prime number. This further improves diffusion

properties of the operation at the expense of more computation. Techniques have been developed to

efficiently implement 2N+1 prime modulus operations using only two additional (and parallel) adds plus

one multiply [23].

General Permutations General permutations map N bits onto N bits with an arbitrary exchange of

individual bit values. While trivial to implement in hardware with a wire network (called an XBOX),

these permutations are quite expensive to implement in software. Consequently, newer ciphers strictly

avoid permutations. We still consider them, however, as they are used in DES [13], the US encryption

standard put into practice in the early 1970’s and still in wide use today.

Cipher Key Size Blk Size Rnds/Blk Author Example Application

3DES 112 64 48 CryptSoft SSL, SSH

Blowfish 128 64 16 CryptSoft Norton Utilities

IDEA 128 64 8 Ascom PGP, SSH

Mars 128 128 16 IBM AES Candidate

RC4 128 8 1 CryptSoft SSL

RC6 128 128 18 RSA Security AES Candidate

Rijndael 128 128 10 Rijmen AES Standard

Twofish 128 128 16 Counterpane AES Candidate

Table 1. Secret-Key Symmetric Ciphers Analyzed.

We analyzed the eight secret-key symmetric ciphers listed in Table 1. The table lists for each

algorithm the key size used for the experiments, the block size encrypted by each application of the cipher

kernel, the number of rounds executed within the cipher kernel, the author of the algorithm, and popular

applications that use the cipher. Cipher algorithms typically have three operational parameters: key size,

block size, and number of rounds. The key size is the length of the key used to encrypt or decrypt data.

The block size is the amount of data processed each time the cipher kernel is invoked. The number of

rounds specifies the total number of iterations executed by the cipher kernel loop. 3DES has a key size of

112 bits, block size of 64 bits, and 48 rounds. Rijndael has key size of 128 bits, block size of 128 bits, and

www.manaraa.com

Lisa Wu Page 16 4/22/01

10 rounds. The remaining kernels use at least 128 bits of key data. Each algorithm is generally considered

a strong algorithm, having undergone review and aggressive cryptanalysis. A strong cipher has high

resilience to the efforts of an unrelated party attempting to determine the original content of an encrypted

message. Four of the ciphers, i.e., 3DES [13], Blowfish [11], IDEA [23], and RC4 [34], are algorithms

used in popular software packages. 3DES runs the US DES standard encryption algorithm [11] serially

three times with three 56-bit keys. This is the mode of operation specified in the Secure Sockets Layer

(SSL) protocol specification [39]. Rijndael [10] runs the new US AES standard encryption algorithm

selected by The National Institute of Standards and Technologies (NIST). The remaining algorithms, i.e.,

Mars [7], RC6 [33], and Twofish [35], are second round candidates for the Advanced Encryption

Standard (AES) [1]. Many of the AES algorithms will likely emerge as high-quality encryption

algorithms that will see use in popular applications and protocols.

The baseline implementation of each algorithm is quite efficient. We obtained optimized

implementations of each of the AES finalists from the inventors of the algorithms. 3DES, Blowfish, and

RC4 were all developed by Eric Young of CryptSoft [11]. CryptSoft’s code is quite efficient, as a result,

it has found its way into many popular software systems including SSH, OpenSSL, FreeBSD, and the

Mozilla web browser. The optimized IDEA implementation was provided by Ascom, inventors of the

algorithm. Operation of the algorithms can be tailored significantly, e.g., number of rounds, block size,

and key size. We configured each algorithm as suggested by the inventors to maintain good strength and

performance. 3DES was configured as per the SSL specification [39]. All ciphers were run in chaining-

block-cipher (CBC) mode. In this mode, the value of cipher text block i is XOR’ed with plaintext block

i+1 before it is encrypted. Nearly all applications use CBC mode as it produces ciphertext that is more

resistant to attacks.

www.manaraa.com

Lisa Wu Page 17 4/22/01

Chapter 3 Cipher Kernel Analysis

Successful cryptographic co-processor design requires a thorough understanding of the nature of private

key cryptography, its essential operations, and its inherent bottlenecks. In the following sections, we

describe the cipher analysis tools used and we analyze cipher throughput and bottlenecks.

Section 3.1 Cipher Analysis Tools

Performance analysis was performed with the SimpleScalar Tool Set version 3.0 for the Alpha

architecture [5]. The SimpleScalar tool set [6] includes detailed microarchitecture simulators that can be

tailored to reveal the bottlenecks within a program. We used the SimpleView visualization framework to

optimize the performance of the cipher kernels. The SimpleView viewer displays graphically the stalls

experienced by instruction as they pass though the modeled pipeline, making it fairly straightforward to

identify the bottlenecks that slowed cipher kernels.

All baseline codes were compiled with the Compaq Alpha CC compiler (version 5.9) with full

optimization and EV6 architecture optimizations (e.g., byte and word loads). All hand-coded versions of

the algorithms were based on assembly outputs from the Compaq CC compiler with the same

optimizations. All analyzed codes (baseline and optimized) were validated by running the optimized

encryption kernel with the original decryption kernel (and vice versa).

We analyzed program performance on the detailed timing simulator (sim-outorder). The timing

simulator executes user-level instructions, performing a detailed timing simulation of an aggressive 4-way

dynamically scheduled microprocessor with two levels of instruction and data cache memory. Simulation

is execution-driven, including execution down any speculative path until the detection of a fault, TLB

miss, or branch misprediction. Our baseline simulation configuration models a future generation out-of-

order processor microarchitecture. The processor has a large window of execution; it can fetch and issue

up to 4 instructions per cycle. It has a 256 entry re-order buffer with a 64-entry load/store buffer. Loads

can only execute when all prior store addresses are known. There is an 8 cycle minimum branch

misprediction penalty. The baseline processor has 4 integer ALU units, 2-load/store units, 2-FP adders, 1-

integer MULT/DIV, and 1-FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 7 cycles, Integer DIV

12 cycles, FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12 cycles. All functional units, except the

divide units, are fully pipelined allowing a new instruction to initiate execution each cycle.

The processor we simulated has 32k 2-way set-associative instruction and data caches. Both caches

have block sizes of 32 bytes. The data cache is write-back, write-allocate, and is non-blocking with 2

ports. The data cache is pipelined to allow up to 2 new requests each cycle. There is a unified second-

level 512k 4-way set-associative cache with 32 byte blocks, with a 12 cycle hit latency. If there is a

second-level cache miss it takes a total of 120 cycles to make the round trip access to main memory. We

www.manaraa.com

Lisa Wu Page 18 4/22/01

model the bus latency to main memory with a 10 cycle bus occupancy per request. Address translation is

implemented a 32 en-try 8-way associative instruction TLB and a 32 entry 8-way associative data TLB,

each with a 30 cycle miss penalty.

Section 3.2 Cipher Throughput Analysis

 Figure 4 shows the performance of the cipher kernels executing on a 600MHz Alpha 21264

workstation (Alpha 21264), the baseline microarchitectural model (4W) implemented using SimpleScalar

simulators [5], and the upper bound dataflow performance of the algorithm (DF). Dataflow performance

was measured on the performance simulator using perfect branch prediction, infinite window size,

unlimited fetch bandwidth, perfect memory address disambiguation (e.g., loads never wait for unrelated

stores even if their addresses have not yet been computed), and unlimited functional unit resources. The

dataflow experiments represent the maximum performance that the original code can achieve. Encryption

performance is shown in bytes per 1000 clock cycles executed. This is a convenient metric because it

represents the encryption performance in MB/s on a 1GHz machine.

We felt it was important to validate the performance of the baseline SimpleScalar model so we ran the

identical code on a 600 MHz Alpha 21264 workstation (running Tru64 Unix) with a 1GB main memory.

We loosely based our simulator baseline on the Alpha 21264 microprocessor, setting the resource

configuration and their latencies to values published by Compaq [22]. The correlation in absolute

performance was quite close, all except Mars and Twofish were within 10% of the actual machine tests.

Mars was 11% faster, Twofish was 15% faster. It’s difficult to assess why these discrepancies exist as

many of the details of the Alpha 21264 microarchitecture have not been disclosed. We feel they are likely

Figure 4. Cipher Performance Comparison Between Alpha
21264, Microarchitecture Model, and the Dataflow Machine.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Blowfish 3DES IDEA Mars RC4 RC6 Rijndael Tw ofish

Alpha 21264

4W

DF

www.manaraa.com

Lisa Wu Page 19 4/22/01

due to the 21264’s clustered microarchitecture, which is not modeled by SimpleScalar. The clustered

microarchitecture has slightly higher forwarding latency for some instructions; this would account for the

slightly better performance of the algorithms when running on the simulator. However, performance

trends were indeed captured, thus we are fairly confident that our performance models are representative

of real hardware.

As shown in Figure 4, the baseline 4-wide superscalar processor model performance (4W) varied

dramatically. The worst performance was given by 3DES. 3DES is computationally very complex, and it

contains operations (e.g., general permutation) that do not map well to a general-purpose microprocessor.

It is interesting to note that a 1 GHz processor running the 3DES kernel (a common encryption mode for

secure web transports) would produce a maximum throughput of 7.32 MBytes/s, not even enough

throughput to saturate a trailing edge 100 MBs Ethernet link, and barely enough to saturate a low-cost T3

communication line. IDEA also turned in a poor performance, the primary bottleneck in this cipher is

numerous 7-cycle multiplies.

The AES standard candidates have much better performance with Rijndael leading the pack at 48.51

bytes/1000 cycles. The best performance overall was delivered by RC4 at 88.16 bytes/1000 cycles, more

than 10 times the performance of 3DES. RC4 benefits from significantly more parallelism than the other

algorithms. The algorithm is essentially a key-based random number generator that XOR’s a random

sequence onto the input stream. The iterations of the random number generator are (mostly) independent,

al-lowing its execution to fully saturate a wide machine, resulting in very high-bandwidth encryption.

The last experiment (DF) shows the scalability of cipher kernel performance. In these experiments, the

original code is executed on a dataflow machine. We found these results quite surprising, Blowfish,

IDEA, and RC6 are running within 20% of dataflow machine performance. There is slightly more

headroom for Mars and Twofish, with potential speedups of 29% and 76%, respectively. RC4 and

Rijndael are the outliers, these codes have ample parallelism and could be sped up with more capable

hardware.

Section 3.3 Bottleneck Analysis

Figure 5 illustrates the factors that slow down the cipher kernels with performance headroom. Results

are only shown for the algorithms that were not running at dataflow performance in Figure 4. The graph

shows the performance impact of inserting a single bottleneck into the dataflow machine execution. The

resulting performance impact indicates the extent to which the bottleneck is fully exposed during

execution, independent of all other bottlenecks. Note that if a bottleneck affects the dataflow machine, it

may not help the performance of the baseline machine if it is removed. All of the exposed bottlenecks

may have to be removed before performance improvements are seen in the baseline machine. The most

www.manaraa.com

Lisa Wu Page 20 4/22/01

important aspect of these analyses is that bottlenecks that do not affect the dataflow machine will not (and

cannot) affect the performance of the baseline machine.

Six bottlenecks are analyzed. The Alias bar shows the impact of stalling loads in the pipeline until all

earlier store addresses have been resolved (i.e., no address aliases). Branch shows the effects of

mispredictions, Issue shows the impact of reducing issue width. Mem shows the impact of introducing a

realistic memory system, and Res gives the impact of limited functional unit resources. Window shows the

impact of a limited-size instruction window, and All shows performance of the machine with all

bottlenecks enabled.

It is interesting to note that branch mispredictions and data memory performance do not impair the

performance of any ciphers. This observation is in stark contrast to other benchmarks commonly studied

in the computer architecture literature. Branch mispredictions are not a problem for these codes as

branches are quite predictable, usually found in kernel loops. Cache misses rarely occur as the algorithms

read one memory value and then compute with it, often for hundreds of cycles. In addition, our memory

system has a next-line prefetch capability which eliminates virtually all data cache misses in the cipher

kernel.

A limited window size also has little affect on any of the codes, except RC4. RC4 has significant

parallelism between rounds of the kernel cipher. The other algorithms do not, especially when configured

in chaining block mode (as they were for these experiments). While there is some parallelism, it is fairly

local for all the algorithms except RC4. A similar trend can be seen for address aliases. All the algorithms

(except RC4) only access memory to update intermediate vectors and read input data, as a result, all loads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3DES Mars RC4 Rijndael Twofish

Alias
Branch
Issue
Mem
Res
Window
All

Figure 5. Cipher Kernel Bottleneck Analysis.

www.manaraa.com

Lisa Wu Page 21 4/22/01

are dependent on the previous stores. Having perfect alias detection does little for these codes as they still

end up waiting on all previous stores. This is not the case for RC4, however, as this code performs many

stores to an internal table used for key-based random number generation. Depending on the input stream,

stores in the previous round of the algorithm could be dependent, however, the probability of this is 1/256

(assuming good diffusion). In the dynamically scheduled microarchitecture, these unknown (and mostly

independent) stores stall later loads and reduce the overall throughput of the algorithm.

As shown in Figure 5, introducing these stalls has a significant affect on dataflow machine

performance. The most prevalent factors leading to poor performance are insufficient issue bandwidth and

lack of function unit resources, with Rijndael and RC4 having the largest impacts. Consequently, ciphers

with performance headroom will benefit most from additional resources and issue bandwidth. For the

benchmarks running at near dataflow speeds, we will have to rely on latency reduction of individual

operations to improve their performance.

Section 3.4 Cipher Relative Run Time Cost

When attacking a bottleneck, it is important to accurately discern what part of the code is creating the

bottleneck. We can best spend optimization resources by focusing on this part of the algorithm. Each of

the ciphers is composed of three major components: setup, encryption kernel, and decryption kernel. The

setup code processes the key to create various SBOX’s and key-based permutations required by the cipher

kernel. In addition, many of the algorithms pre-compute lookup tables (based on the key) that speed

processing in the cipher kernel. The encryption and decryption kernels process one block of data.

0

10

20

30

40

50

60

70

80

90

100

16 64 256 1k 4k 16k 64k 256k 1M

Session Length (in bytes)

Blowfish

3DES

IDEA

Mars

RC4

RC6

Rijndael

Twofish

Figure 6. Setup Cost as a Function of Session Length.

www.manaraa.com

Lisa Wu Page 22 4/22/01

Figure 6 shows the relative cost of cipher setup compared to the encryption kernels. (The decryption

kernels were omitted as their cost is identical to encryption). Costs are measured in run time for varied

session lengths. Since setup code is called only once per session, longer sessions better amortize setup

cost. As shown in the figure, setup costs for 3DES and IDEA are quite small, even for 16 byte sessions.

3DES’s setup times are small due to its costly encryption kernel. IDEA, on the other hand, is designed to

have very low-cost startup. The next group, Mars, RC4, RC6, Rijndael, and Twofish all have moderately

sized setup costs, with overheads dropping well below 10% at session lengths of 4k or greater. The clear

outlier is Blowfish, which only sees setup costs below 10% for sessions longer than 64k bytes. Blowfish

runs the encryption kernel on the 128-bit key 520 times before commencing encryption 8k bytes of input

data, requiring much longer sessions to amortize setup.

Given the dominance of cipher kernels in overall performance (even for Blowfish), we focused our

attention on the cipher kernels for the remainder of our analyses. For all remaining experiments, we use a

session length of 4k bytes.

Section 3.5 Cipher Kernel Characterization

To gain a deeper understanding of the cipher kernel operations executed, we profiled each kernel and

classified individual operations into nine categories. Their operations are classified into general

arithmetic, logical, multiplication, rotate, memory operations, substitutions, permutations, moves, and

branches. Figure 7 shows the breakdown by category of all dynamic operations executed. All cipher

kernels studied exhibit varied but similar characteristics. Substitution operations implement a key-based

transformation function using a byte-indexed array called an “SBOX”. Permutation operations rearrange

the bit values using a key-parameterized network called an “XBOX”. Arithmetic operations are primarily

additions and address computations. Multiplication operations include regular multiplication and modular

multiplication operations. Logical operations primarily consist of AND and XOR operations. It is

interesting to note that very few fundamental operations are used to implement these ciphers. In addition,

many of these fundamental operations, e.g. XORs, make inefficient use of the processor clock cycle,

creating opportunities for more efficient designs.

As shown in Figure 7, the algorithms can be broadly divided into two categories: those that rely on

arithmetic computation, and those that rely on substitutions. IDEA and RC6 are computational algorithms

relying heavily on multiplies to diffuse input data bits. Blowfish, 3DES, Rijndael and Twofish, on the

other hand, rely heavily on SBOX’s to translate input data to ciphertext. The former groups will benefit

from more computing resources (especially multiplies) and from faster operations (e.g., rotates). The

latter group will benefit from increased memory bandwidth and faster memory accesses for SBOX

translations. Besides improving the efficiency of kernel operations, it is possible to speed up an algorithm

using value prediction.

www.manaraa.com

Lisa Wu Page 23 4/22/01

Value predictors produce values that break dependencies between instructions. As dependencies are

removed, instruction level parallelism and program performance increases. For example, if a value

predictor could predict the input values to the cipher kernel rounds, it would be possible for kernel rounds

to execute in parallel, resulting in significantly more cipher throughput. To test this possibility, we

instrumented our microarchitecture model with an infinite-sized last value predictor [24] and used it to

predict the results of all instructions in each cipher kernel. The most predictable dependence edge in any

of the cipher kernels was predicted correctly only 6.3% of the time! Clearly, diffusion works to transform

data in unpredictable ways, eliminating the possibility that value speculation might be useful in improving

cipher performance.

To summarize the characterization of these ciphers, they employ few fundamental operations with

varied latency. Many of the algorithms have little or no parallelism. The algorithms that do have

performance headroom would require more issue bandwidth and function unit resources to execute faster.

None of the programs have branch or memory bottlenecks, and most are not slowed down by memory

aliases. Given these characteristics, it seems the ideal architecture for fast cryptographic processing is a

scalable design that efficiently executes the fundamental operations of cryptography. We implemented

two possible solutions that provide efficient cryptographic processing. The first possible solution is to add

architectural extensions for the Alpha processor. The other solution is a co-processor that is designed

specifically to run all cryptographic algorithms efficiently. These implementations are presented in detail

in Chapter 4 and 5 respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Blowfish 3DES IDEA Mars RC4 RC6 Rijndael Twofish

Branch

Mov

Ld/St

Xbox

Sbox

Mult

Rotates

Logical

Arith

Figure 7. Breakdown of Cipher Operations.

www.manaraa.com

Lisa Wu Page 25 4/22/01

Chapter 4 Architectural Extensions

Figure 8 lists the additions we made to the instruction set to support fast execution of symmetric

secret-key ciphers. A number of important considerations drove the design of these instructions. First, all

instructions are limited to two register input operands and one register output. While having three register

inputs would provide significantly more opportunity to combine low-latency operations, we felt the

resulting impact of a third input operand was too great to consider for a simple instruction set

enhancement. Adding a third register operand would increase the number of read ports on the register file

by 50%, which would subsequently increase its cycle time. In addition, more bandwidth would be

required from the register renamer as well; slowing the renamer down could potentially slow the entire

pipeline.

Second, we carefully considered the impact on cycle time each new instruction could potentially

create. Baseline functional units and modified functional units were specified in structural Verilog,

synthesized using Cascade EPOCH synthesis tools, and timing analyses were performed using SPICE for

a 0.25u MOSIS TSMC process. Finally, we worked to develop a small set of canonical operations that

could be broadly applied to many cipher algorithms.

Rotates (ROL and ROR) are fully supported, for 64 and 32-bit data types. The Alpha architecture does

not support rotate instructions, as a result, the addition of rotates saves 4 instructions (and 3 execution

cycles). Nearly all the ciphers (except IDEA and Rijndael) have a fairly frequent usage of rotates.

The ROLX and RORX instructions support a constant rotate of a register input, followed by an XOR

with another register input, and the result replaces the second register input. This was the only consistent

opportunity we found to combine operations; all other combinable operations required at least three input

operands. While this instruction does require three inputs, the third is a constant (within the instruction),

as a result, there is no impact to the register files or renamers. The ROLX and RORX instructions are

useful in speeding up Mars and RC6. Timing analyses indicated that these instructions easily fit in the

cycle time of a same-sized ALU.

The MULMOD computes the modular multiplication of two register values modulo the value

0x10001. This is a fairly fast operation, we use the algorithm detailed in [23]. The implementation

requires a 16-bit multiply, followed by two 16-bit (parallel) additions and then two levels of MUX’ing.

Timing analyses indicate the operation can complete in just over three cycles, we conservatively estimate

that the operation can complete in four ALU cycles.

www.manaraa.com

Lisa Wu Page 26 4/22/01

The SBOX instruction speeds the accessing of substitution tables. The instruction restricts SBOX’s to

256-entry tables with 32-bit contents. As shown in Figure 9, a SBOX is accessed by concatenating the

upper bits of the table virtual address with eight bits extracted from the index register. The access returns

from memory a 32-bit table value. The cipher algorithms studied all use 256 entry SBOX’s, with either 32

or 8 bit entries. We implemented 8 bit entries by zeroing the upper 24 bits of each SBOX table entry.

Other SBOX table orientations could be efficiently implemented with these instructions as well. Smaller

SBOX’s could replicate SBOX entries, thereby creating a don’t-care bit in SBOX byte index. Larger

MULMOD <srca>,<srcb>,<dest>

REG[<dest>] <- (REG(<srca>) * REG[<srcb>]) % 0x10001

ROL <srca>,<srcb>,<dest>

REG[<dest>] <- REG[<srca>] <<< (REG[<srcb>] & 0x3f)

ROR <srca>,<srcb>,<dest>

REG[<dest>] <- REG[<srca>] >>> (REG[<srcb>] & 0x3f)

ROLX <src>,#<rot>,<dest>

REG[<dest>] <- (REG(<src>) <<< #<rot>) ^ REG[<dest>]

RORX <src>,#<rot>,<dest>

REG[<dest>] <- (REG(<src>) >>> #<rot>) ^ REG[<dest>]

SBOX.#<tt>.#<bb>.<aliased> <table>, <index>, <dest>

REG[<dest>] <- MEM32[(REG[<table>]&~0x3ff) | (((REG[<index>]>><bb>*8)&0xff)<<2)]

The SBOX instruction extracts byte #<bb> (0..3) from register <index> and concatenates
the resulting 8-bit value with register <table> to produce a 32-bit aligned Sbox address.
The 32-bit value at the SBOX address is loaded (zero-extended) into <dest>.

NOTE: stores are not visible within the SBOX until an SBOXSYNC instruction is executed,
unless the <aliased> flag is indicated. The table designator (#<tt>) may be any value,
however, performance of the SBOX instruction may be improved if each SBOX table has
associated with it a different table (#<tt>) value.

SBOXSYNC.<tt>

SBOX #<tt> is synchronized with memory. Once this instruction is executed, stores to the
SBOX memory since the last SBOXSYNC will become visible to later SBOX instructions.

XBOX.#<bbb> <srca>,<srcb>,<dest>

REG[<dest>] = 0

for (i=#<bbb>*8, j=0; i < #<bbb>+8; i++, j++)

REG[<dest>].bit[i] <• (REG[<srca>] >> (REG[<srcb>] >> j*6)) & 1

The XBOX instruction performs a partial general permutation of register <srca>, given the
bit permutation map in register <srcb>. The result of the permutation is placed in register
<dest>.

Figure 8. Architectural Support for Secret-Key Ciphers.

www.manaraa.com

Lisa Wu Page 27 4/22/01

SBOX’s could be implemented by striping the table across multiple architectural tables and selecting the

correct value based on the upper bits of the larger table index.

As shown in Figure 8, the SBOX instruction eliminates address generation (which takes a full cycle on

the baseline machine). This is accomplished by restricting that all SBOX tables be aligned to a 1k byte

boundary. SBOX address calculation then simplifies to zero-latency bit concatenation. To speed most

SBOX operations, stores to SBOX storage are not visible by later SBOX instructions until an

SBOXSYNC instruction is executed. This optimization eliminates the need for SBOX instructions to

snoop on store values in the processor core. Moreover, SBOX implementations are possible that have

separate storage that need not be kept coherent with cache memory. It was fairly straightforward to

identify the locations to place SBOXSYNC instructions - always at the end of key setup routines which

generated the key-based SBOX entries. Notably, RC4 stores into its SBOX table. To support this

algorithm, we added an alias bit to the SBOX instruction, which if set allows later SBOX instructions to

observe earlier store values. We implemented this form of the SBOX instruction by treating it as a load

with optimized address generation.

don’t
care

00

4:1 8-bit MUX

Table Address Table Index Opcode

Byte Number

Table Tag

Table Data

SBOX Value
SBOX Address

= SBOX Hit?

Figure 9. SBOX Instruction Semantics.

www.manaraa.com

Lisa Wu Page 28 4/22/01

We explored two SBOX implementations: a simple cache-based implementation and a dedicated

SBOX cache. The simple implementation produces the SBOX storage address and then sends the memory

request to a data cache memory port. If the SBOX aliased bit is not set, SBOX instructions may execute

in any order. As a result, these SBOX instructions need not enter the memory ordering buffer (the device

that implements out-of-order load/store execution). The SBOX instructions simply enter the cache

pipeline when a free port is available. With this implementation, SBOX instructions complete in 2 cycles,

much faster than the 4 cycles required to implement SBOX accesses with load instructions.

Our more aggressive SBOX implementation adds four SBOX caches to the microarchitecture. SBOX

caches have a single tag (the table base address), making them a one line sector cache [16]. Each SBOX

cache sector is 32-bytes in length (one data cache line). As shown in Figure 9, SBOX addresses are sent

to the specified SBOX cache. The table indicator in the SBOX instruction allows the programmer to

“schedule” the SBOX caches, specifying which cache contains a particular table. As a result, the

underlying implementation need not implement a 4-ported 4k byte cache, but rather four faster single-

ported 1k byte SBOX caches. The instruction scheduler directs SBOX instructions to the correct SBOX

cache based on the instruction opcode table specifier. The SBOX cache is virtually tagged, thus TLB

resources are only required on misses. When the virtual tag does not match, the SBOX cache is flushed

and the touched sector is fetched from the data cache. When the SBOXSYNC instruction is executed, all

sector valid bits are cleared forcing subsequent SBOX instructions to re-fetch SBOX data from the data

cache. On a task switch, the SBOX cache is flushed by invalidating its tag. No writeback is necessary as

SBOX caches are read-only.

The XBOX instruction implements a portion of a full 64-bit permutation. The operation takes two

input registers. One register is the operand to permute; the other register is a permutation map that

describes where each input operand bit is written in the destination. The permutation map contains eight

6-bit indices, each indicates which bit from the input operand will be written in the output. The XBOX

instruction opcode indicates which of the eight bytes in the destination register are permuted. The 32-bit

permutations in the 3DES algorithm can be completed in 7 instructions (and executed in 3 cycles), a

significant improvement over the baseline code which requires 39 instructions.

www.manaraa.com

Lisa Wu Page 29 4/22/01

Chapter 5 CryptoManiac Architecture

In order to reach better cipher performance, efficiency becomes the goal of our design. In pursuing our

goal, the design will focus on a simple microarchitecture, an efficient implementation of operations, and

more efficient use of the clock cycle. CryptoManiac is a 4-wide 32-bit Very Large Instruction Word

(VLIW) machine with no cache and a simple branch predictor. Since kernel dependencies through

registers and memory are well described, a static VLIW scheduler suffices. The lack of branch

bottlenecks eliminates the need for a complex branch predictor. A simple Branch Target Buffer (BTB)

can correctly predict nearly all branches. We chose not to include a cache structure because code and data

sets fit comfortably in a small static RAM. We employ a triadic (three input operands) ISA that permits

combining of most cryptographic operation pairs for better clock cycle utilization. Finally, the

CryptoManiac processing elements can be combined into chip multiprocessor configurations for

improved performance on workloads with inter-session and inter-packet parallelism.

Section 5.1 System Architecture

Figure 10 details the high level architecture of the CryptoManiac (CM) processor. The host processor

interfaces to the CM through the input (InQ) and output (OutQ) request queues. Cryptographic processing

requests are inserted into the InQ by a host processor over a connecting bus. The request scheduler

distributes host processor requests, in the order received, to CM processing elements. The CM processing

elements service requests from the InQ, placing any results produced in the OutQ for the host processor.

We envision that the input and output queues would be accessible by the host processor via a standard bus

interface, such as a PCI bus. It is sufficient to have one input queue for many CM processing elements, as

the computationally intensive nature of cryptographic processing limits the bandwidth requirements on

this interface.

The CM processing elements block waiting on a request from the host processor. When a request is

dispatched to the CM processor, it uses to the request code to initiate the correct handler function. When

CM processing is complete, the tagged result of the computation is pushed into the OutQ for reception by

the host processor. The host processor requests are tagged with a unique ID that can be used to identify

requests as they complete and exit the OutQ. The unique ID permits requests to complete out of order as

may be the case with varied processing demands on CM processors. Also contained in the CM request is

a session identifier that names a unique communication channel being processed in the CM.

The CM requests specify an operation for the CM to perform on the incoming data. Operations

include:

www.manaraa.com

Lisa Wu Page 30 4/22/01

• Create a private key session. This request specifies the cryptographic algorithm, operating mode (e.g.,

electronic codebook vs. chaining mode), and the private key of the session. Algorithm setup is

performed during this request, creating key-specific substitution tables.

• Delete a private key session. This request releases all storage associated with a session.

• Encrypt/Decrypt data. The requested data is processed and the resulting ciphertext or plaintext is

returned in the result packet.

Additional administrative requests are supported that allow the host processor to initialize CM processor

memory and redirect execution of individual CM processors.

Requests arriving for CM processing are dispatched from the InQ to CM processing elements by the

request scheduler. Requests are distributed first to a free CM processor. If multiple CM processors are

free, the request is dispatched to the CM processing element that most recently processed a request in the

same session. If there are no free CM processors in the same session, the request is assigned to the least

recently used CM processor. Directing requests to CM processors in the same session reduces the setup

time to service the request, and when multiple CM processors are free but not in the same session, the

least recently used CM processor is likely to contain an unneeded session context.

The keystore is a high-density storage element that contains key-specific storage such as key data and

substitution tables. The keystore permits the CryptoManiac to process simultaneous sessions on the same

CM processor by storing key-specific data in the shared keystore. When a new context is loaded into a

CM processor, key specific data is transferred over a high performance interface to internal CM storage.

This data includes substitution data, permutation counters, and other internal algorithm state, at most 5k

Figure 10. High-level Schematic of the CryptoManiac Architecture.

id session action data… id session result…CM
Proc

CM
Proc

CM
Proc

Keystore

R
eq

S
cheduled

In Q Out Q

requests

.

.

.

results

Request Format Result Format

www.manaraa.com

Lisa Wu Page 31 4/22/01

bytes for any of the algorithms implemented. Key setup is quite expensive for many algorithms, thus

performance is greatly improved by having a convenient place to store key-specific data. The keystore is

an optional component to the CryptoManiac design, it is only required when multiple sessions must be

serviced simultaneously. In single session applications, such as virtual private networks and secure disk

processing, the keystore is not required.

Section 5.2 Processing Element Architecture

The CM processing element is a simple 4-wide 4-stage VLIW processor as shown in Figure 11. Each

cycle the pipeline fetches a single statically scheduled VLIW instruction word that contains four

independent instructions (or NOPs if independent instructions are not available). These four instructions

access the register file in parallel while decoding. In the execute stage, instructions perform up to four

parallel functional unit operations. In the writeback stage of the pipeline (WB), the results of the CM

instruction are written back to the register file.

The front end of the CM pipeline contains a simple branch target buffer (BTB) used to predict branch

targets. The BTB contains the target address of a branch, any instruction that hits in the BTB is

considered a taken branch. When a VLIW word contains multiple branches, the BTB always makes a

prediction based on the last taken branch. Most branches in cipher codes are trivial to predict as nearly all

branches are taken branches at the end of cipher kernel loops. Instruction memory is accessed in parallel

with the BTB, returning a VLIW instruction word at the end of the processor cycle. Due to the small

working set size of cipher algorithms, a very small BTB with 16 entries suffices. Moreover, the

B
T
B

I
M
E
M

RF

FU

FU

FU

FU

Data
Mem

Keystore
Interface

InQ/OutQ
Interface

IF ID/RF EX/MEM WB

Figure 11. High-level Schematic of CryptoManiac Processing Architecture.

www.manaraa.com

Lisa Wu Page 32 4/22/01

instruction memory need not be large. 1K bytes is sufficient to hold any of the cipher algorithms. If key

setup codes are kept off-chip, for example, by running setup codes on the host processor, many cipher

kernels could be stored in a single 1K instruction memory.

During instruction decode, instructions access the register file. To support instruction combining, the

register file supports three operand reads and one write per cycle per instruction. In the EX/MEM stage,

instruction operations are executed, including loads and stores. Data memory need not be large, since key

tables are stored in SBOX caches within the functional units (detailed in Section 5.4); a 4K-byte data

SRAM suffices for all the algorithms we implemented.

The execute stage includes four 1K-byte static RAM SBOX caches, used to speed up substitution

operations. Each SBOX cache contains a 1K byte page-aligned substitution table. The alignment

restriction reduces address generation to a single bit-wise concatenation of the table address and the table

index. The details of this design are described in Chapter 4.

Section 5.3 Instruction Set Architecture

Figure 12 gives a brief overview of the CryptoManiac instruction set architecture. Instructions are 32

bits in length. Each instruction contains three input registers and one output register. Three input operands

are required to take advantage of the instruction-combining feature. In a conventional microarchitecture,

regardless of the latencies of instructions, each instruction takes one or more clock cycles to complete.

This is the case for even very low latency instructions such as XORs and ANDs. Earlier analyses revealed

a high frequency of these low latency instructions, resulting in inefficient use of the processor clock cycle.

Further analyses of the cipher kernels reveal that arithmetic operations are often followed by logical

operations. This property is endemic to cipher algorithms because the mixing of linear and non-linear

operations prevents attacks using simple linear analysis. We can leverage this property to better utilize the

processor clock cycle by combining arithmetic and logical operations within a single cycle.

Figure 12. CryptoManiac ISA in CNF form.

bundle := <inst><inst><inst><inst>
inst := <op pair><dest><operand1><operand2><operand3>
operation pair := <short><tiny>|<tiny><short>|<tiny><tiny>|<long><nop>
tiny := <xor>|<and>|<inc>|<signext>|<nop>
short := <add>|<sub>|<rot>|<sbox>|<nop>
long := <mul>|<mulmod>

Examples:
Instruction Expression
Add-Xor R4, R1, R2, R3 R4 <- (R1+R2)⊗R3
And-Rot R4, R1, R2, R3 R4 <- (R1&R2)<<<R3
And-Xor R4, R1, R2, R3 R4 <- (R1&R2)⊗R3

www.manaraa.com

Lisa Wu Page 33 4/22/01

Our instruction-combining architecture divides operations into three classes: tiny, short, and long.

Tiny operations include all logical operations and sign extension; short operations include arithmetic

operations, rotates, and substitutions; multiplies are classified as long operations. Function units contain

datapath networks that allow any pairs of tiny operations or short/tiny operations to execute together in a

single cycle. Therefore, we combine general arithmetic instructions with logical instructions, substitutions

with logical instructions, and finally rotate operations with logical instructions. Timing analyses indicate a

multiplication operation can complete in under three cycles. Modular multiplication operations are

implemented using one regular 16-bit multiplication followed by two 16-bit parallel additions and two

levels of MUX’ing. This algorithm is derived from the Chinese remainder theorem detailed in [28].

Modular multiplication can be completed in just under three cycles.

Section 5.4 Design Methodology

The main loops of the cipher kernels are hand-optimized for the CryptoManiac instruction set. Hand-

optimization of the kernels includes selection of instruction combinations and placement of instructions

within VLIW instruction words. Instruction combining was performed by analyzing the known data

dependencies of each kernel loop and pairing 3-input short-tiny, tiny-short, or tiny-tiny instruction

combinations for minimal cycle counts. Instruction schedules are generated by analyzing kernel

dependence graphs such that instructions on the critical path are executed as early as possible. We

generated kernel schedules for a variety of processor widths and with/without instruction combining. We

used the 4-wide instruction-combining model as our baseline model. Three more designs were evaluated

in detail, including a 3-wide VLIW with combining (3WC), a 2-wide VLIW with combining (2WC), and

a 4-wide VLIW without combining (4WNC). We validated our hand schedules with a super optimizer

that given a kernel dependence graph as an input can generate all possible schedules for a given

architecture, keeping only those with the best performance and lowest resource requirements. In a few

cases, we were able to improve upon the earlier hand schedules.

Encryption Kernel Cycle Counts (per round)
Alpha 4WC 3WC 2WC 4WNC

Blowfish 9.58 4 4 6 5
3DES 23.56 7 8 9 12
IDEA 91.95 14 14 17 15
Mars 28.86 9 9 9 10
RC4 11.49 8 8 8 9
RC6 23.24 7 7 7 9
Rijndael 33.84 9 11 17 10
Twofish 37.36 7 8 11 8

Table 2. Optimization of Kernel Loop Cycle Counts.

www.manaraa.com

Lisa Wu Page 34 4/22/01

Table 2 lists kernel cycles per round for each original (Alpha only) and optimized cipher. The kernel

cycles per round for the Alpha experiments are fractional because the code is dynamically scheduled,

therefore instructions from different rounds can overlap in the same cycle. The number of cycles per

round is equal to the total number of cycles to encrypt a block divided by the number of rounds. An

example schedule of the Blowfish kernel for a 4-wide combining architecture is illustrated in Figure 13.

As shown in Table 2, all optimized kernels take fewer cycles than the original Alpha to execute. This

result does not necessarily mean better performance because we have not yet considered the frequency at

which the CryptoManiac can operate. A performance metric that combines both clock cycle time and

kernel cycle counts is discussed in Chapter 6.

To gauge the cycle time of the design, a Verilog hardware model was built. The execution stage of the

VLIW machine, along with full-crossbar bypass logic, and input/output queues was written in Verilog

HDL. We used Synopsys logic synthesis tools [38] to evaluate design timing, area, and power. The

synthesis tool accepts Verilog HDL blocks and synthesizes them according to timing constraints given.

The design component library uses a 0.25um standard cell library to predict the final timing and area. To

assure optimal clock speed, timing constraints were tightened in 0.25ns intervals until the synthesis failed.

A 3% clock skew and interconnect wire delays were modeled as well.

Our baseline model requires four functional units to support 4-wide issue with instruction combining.

As shown in Figure 14, each functional unit consists of two logical units, one adder, one 1k-byte SBOX

cache, and one rotator. Only two of the four functional units contain a multiplier since none of the kernels

require more than two multiplies per cycle. The logical unit can perform a XOR or AND operation as

specified by the opcode of the combined instruction. Two logical units are available to provide the

Figure 13. Blowfish Dependence Graph and Scheduled VLIW Code.

SBOX SBOX SBOX SBOX

ADD

XOR

ADD

XOR

Sign
Ext

Load

XOR

SBOX SBOX SBOX LoadA
SBOX Add-XOR Load
Add XOR
XOR-SignExt

Takes a total of only 4 cycles to
execute!

CryptoManiac Kernel

www.manaraa.com

Lisa Wu Page 35 4/22/01

flexibility of logical operations at either the beginning or the end of the processor clock cycle. The rotator

is implemented using a barrel shifter.

SBOX cache timing and area analysis was performed with Cacti 2 [9], a tool for estimating memory

components. A 1k byte cache is roughly 0.3mm X 0.3mm, which is 0.09 mm2 in 0.25um technology.

Timing analyses indicated that the SBOX cache latency was not on the critical path of the function unit.

We explored both full and half crossbar configurations for data bypass in the execute stage. We

quickly discovered that the performance impact of using a half crossbar was too great (up to 40% slower)

due to many additional move instructions needed to transfer values between unconnected function units.

This is not surprising given the nature of cryptographic kernels, where bit-diffusion operations require

communication between all functional units.

Section 5.5 The Super Optimizer

The super optimizer, the VLIW scheduler for CryptoManiac is created for the purpose of verifying

hand-optimized cryptography kernel results and to understand the utilization of instruction combining.

Detailed understanding of instruction combining gives us insight as to eliminate unnecessary hardware

inside each functional unit of the CrytoManiac. It also automated generation of optimized kernels for the

various CM architecture studied. The pseudo code for the super optimizer is shown in Figure 15.

The super optimizer takes the disassembly code of the cipher kernels and instruction dependencies as

inputs, and produce an output with which instructions are executed at which clock cycle according to the

machine width specified. The optimizer first compiles a list of ready instructions, instructions that have

all their operands available for use, then take the ready list and check for any instruction combinations.

After checking for instruction combination, if the number of ready instructions exceeds the machine

Figure 14. High-level Schematic of a Single Functional Unit.

XOR

Logical Unit

XOR
Logical Unit

1K Byte
SBOX
Cache

32-Bit
ADDE
R

Pipelined
32-Bit
MUL

32-Bit
Adder

32-Bit
Rotator

AND

AND

www.manaraa.com

Lisa Wu Page 36 4/22/01

width specified, the super optimizer tries all combinations exhaustively. Without any pruning mechanism,

a kernel such as Rijndael, which has up to 16 instructions ready at once, could take a significant amount

of time to run through. As such, we kept track of the minimal cycle count needed to execute the kernel

and prune any other combinations that do not meet the minimum.

We performed experiments of the cryptography kernel cycles scheduled with all combinations, partial

combinations, or no combinations. All combinations includes short-tiny, tiny-short, and tiny-tiny

combinations. The results show that the most important combining instruction type is the short-tiny

instructions. This indicates that it might be cost-effective to only implement a logical unit after the

arithmetic unit but not before. Encryption rates (performance) vs. area were studied in conjunction with

this data, however, the area saved by not having a logical unit before the arithmetic unit did not improve

performance significantly. Therefore, we decided to use the logic-arithmetic-logic approach for

CryptoManiac functional unit design as described in previous sections.

Another study made possible was to increase the width of the VLIW. Several kernels can take

advantage of an 8-wide VLIW because there are more than 4 ready instructions at a particular cycle for

scheduling. A good example is Rijndael, it increased performance by 33% from the 4-wide configuration

instruction_list = NULL;
instruction_list = Load_Instruction(Blowfish);
Schedule(unscheduled_inst_list, cycle_number) {

ready_list = NULL;
expanded_ready_list = NULL;
if (cycle_number > MIN_cycle_scheduled)

return;
Get_ready_list(unscheduled_list, ready_list, expanded_ready_list);
if (number_of_ready_instructions > width of VLIW) {

Try_All_Combinations(unscheduled_list, expanded_ready_list);
Update_Unscheduled_List(unscheduled_inst_list);

}
else {

Update_Unscheduled_List(unscheduled_inst_list);
}
cycle_number++;
if (unschedule_inst_list != NULL)

Schedule(unscheduled_list, cycle_number);
else {

if (cycle_number <= MIN_cycle_number)
MIN_cycle_number = cycle_number;
return;

}
}
for (i = 1 to MIN_cycle_number)

Print_Inst_Scheduled(i);

Figure 15. Pseudo Code for the Super Optimizer.

www.manaraa.com

Lisa Wu Page 37 4/22/01

when run on an 8-wide CryptoManiac. Only special case studies of 8-wide 3DES and Rijndael will be

presented in next chapter.

Section 5.6 Physical Design Characteristics

Table 3 shows the timing, area, and power consumption results for various configurations. A 4-wide

CryptoManiac with instruction combining has an estimated clock cycle of 2.78ns, yielding a

CryptoManiac processor that runs at 360MHz! The same configuration has an area of 1.39mm X 1.39mm

(1.93mm2), which is roughly 1/100th the size of a 600MHz Alpha 21264 processor (200mm2) in the same

technology. The average estimated power consumption of the 4-wide combining model running at

360MHz with a Vdd of 2.1V is 606mW. The Alpha processor running at 600MHz dissipates 75W. The

power consumption results, although an estimate, seem reasonable because the relative power with

CryptoManiac running at 600MHz is 1.01W (1/75th of the Alpha 21264), which is proportional to the area

differences.

The chip area of the CryptoManiac co-processor is likely over-estimated. Synthesized designs tend to

be larger than their hand-optimized counter parts, and the Cacti 2 area estimates are known to be larger

than physical designs we have constructed in the past. An experienced design team could likely produce a

smaller and faster design.

Timing and Area Estimates for Various CryptoManiac Design Configurations
4W Combining 3W Combining 2W Combining 4W NoComb

Timing Result 2.78 ns 2.66 ns 2.54 ns 2.76 ns
Area Result 1.39mm X 1.39mm 1.33mm X 1.33mm 1.26mm X 1.26mm 1.3mm X 1.3mm
Power Result 606.37 mW 593.51 mW 568.50 mW 586.86 mW
Synthesis 3 ns 3 ns 3 ns 3 ns
Critical Path byps-lgc-add-lgc byps-lgc-add-lgc byps-lgc-add-lgc adder

Table 3. Timing and Area Results for CryptoManiac.

www.manaraa.com

Lisa Wu Page 39 4/22/01

Chapter 6 Performance Analysis

Section 6.1 Performance Analysis of ISA Extensions

We hand coded optimized versions of each cipher kernel, and then examined their performance on

four microarchitectures, ranging in cost and performance. Table 4 lists the four microarchitectures

studied. The 4W microarchitecture is a typical high-performance four-issue microarchitecture with

moderately sized memory system and resources. It is roughly modeled after the Alpha 21264

microarchitecture. In the 4W model, there are four ALUs, two data cache ports, and two Rotate/XBOX

units that implement rotates and general permutations. SBOX instructions access the cache memory, thus

they must compete with loads and stores for cache access ports. The 4W model also supports optimized

multiplication. Word-sized (32-bit) multiplies have an early out after 4 cycles. In addition, modular 16-bit

multiplies (modulo 0x10001) are implemented in hardware in 4 cycles. The 4W model can initiate one

64-bit multiply, two 32-bit multiplies, or two 16-bit modular multiplies per cycle. This resource

configuration could be implemented inexpensively by mapping the shorter multipliers onto the 64-bit

multiplier hardware. For example, a Wallace tree based multiplier can be converted to multiple shorter

precision multipliers by simply isolating portions of the Wallace tree with MUXes.

4W 4W+ 8W+ DF
Fetch Speed 1 block/cycle 2 blocks/cycle infinite
Window Size 128 256 infinite
Issue Width 4 8 infinite
IALU Resources 4 (1 cycle) 8 infinite
IMULT/MULTMOD 1-64 (7 cycles)/2-32 (4 cycles) 2-64/4-32 infinite
D-Cache Ports 2 (2 cycles) 4 infinite
SBOX Caches 0 4 single port (1 cycle) 4 dual ported infinite
Rotator/XBOX 2 (1 cycle) 4 8 infinite

Table 4. Microarchitecture Models.

The 4W+ microarchitecture improves the performance of SBOX instructions, reducing their latency

and providing more bandwidth to SBox values without interfering with cache memory accesses. We

added four SBOX caches, each a 1k single-line sector cache. This configuration support four

simultaneous accesses to four different SBOX tables in a single cycle (four times the bandwidth of the

4W configuration). When a reference is made to an SBOX the tag is checked to see if it contains the

referenced table, and then the valid bit of the sector is checked. If the sector is valid, the 32-bit referenced

value is returned, otherwise, the SBOX sector data (one data cache line) is demand fetched from the data

cache. SBOX storage does not observe stores to the data cache until an SBOXSYNC instruction is

executed (which invalidates the SBOX tag). The 4W+ configuration also adds two more Rotate/XBOX

www.manaraa.com

Lisa Wu Page 40 4/22/01

units, thereby doubling the number of rotates and XBOX instructions that can be executed in a single

cycle.

The 8W+ model provides approximately twice the execution bandwidth of the 4W+ model. This

model doubles the issue width to eight, doubles the number of execution resources, and adds two more

data cache ports. To accommodate the additional execution resources, the front-end performance is scaled

to fetch two blocks per cycle, and the instruction window size is doubled to 256 instructions to expose

more ILP. We don’t claim that it would be wise to construct such a machine, we examine this

configuration simply to demonstrate the headroom in performance if more resources were made available

for cipher kernel execution. Finally, model DF is our dataflow model, described in the previous section.

The maximum achievable performance of the re-coded kernels is given by these experiments.

Figure 16 shows the performance of the optimized codes running on these four processor models. All

performance measurements are shown as speedups (in total cycles to process a 4k session) normalized to

the performance of the original code with rotates running on the baseline microarchitecture with rotate

instructions. Many architectures have fast rotates, so we felt that normalizing to this target was a more fair

assessment of our instruction set extensions. For machines without rotate instructions, e.g., Alpha-based

processors, speedups are even more impressive!

The first bar, labeled Orig/4W, shows the performance of the original code (without rotate

instructions) compared to the performance of the cipher kernels with rotate instructions. This experiment

shows the impact on performance that an architecture will experience if it does not support rotates.

Without a rotate instruction, rotates are synthesized using three instructions for a rotate by a constant

amount (2 cycles to execute), and four instructions for a rotate by a variable amount (3 cycles to execute).

The algorithms that most heavily use rotates, namely Mars and RC6, saw significant slowdowns of 40%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Blowfish 3DES IDEA Mars RC4 RC6 Rijndael Twofish

Orig/4W
Opt/4W
Opt/4W+
Opt/8W+
Opt/DF

Figure 16. Relative Performance of the Optimized Kernels.

www.manaraa.com

Lisa Wu Page 41 4/22/01

and 24%, respectively. The “lowest hanging fruit” for architects to gather here are rotates. These simple

instructions have little impact on the cost or cycle time of a machine and provide good speedups on three

of the ciphers. Intel processors based on the P6 microarchitecture (PII, PIII) have good rotate

performance. Measurements on a PIII found that the machine could sustain one rotate per cycle

continuously. However, Intel recently announced that shifts and rotates on the Willamette

microarchitecture would be at least twice as expensive as addition [31].

The second bar in Figure 16, labeled Opt/4W, give the performance improvement of the fully

optimized (hand coded) cipher kernels running on the 4W model. Even on the less expensive

microarchitecture, speedups for these new kernels is quite impressive. The kernels saw an average

performance improvement of 59%, with IDEA seeing the best overall improvement of 159%. IDEA

benefited from the faster and higher bandwidth modular multiplication support, an operation it uses

frequently. Rijndael also saw very good speedups, with performance almost doubling. Rijndael benefited

mostly from reduced latency for SBOX accesses. With SBox support in hardware, these accesses reduce

from three instructions to one, and speedup from five cycles to two.

Blowfish, 3DES, RC4, and Twofish all saw speedups near 50%. Like Rijndael, Blowfish, RC4 and

Twofish benefited mostly from improved SBox access latency. 3DES saw benefits from improved SBox

access latency and fast XBOX permutations. The outlier in these experiments was RC6. RC6 received

most of its benefits with rotates; on the 4W microarchitecture it does benefit from fast modular

multiplication, but only slightly.

The third bar in Figure 16, labeled Opt/4W+, gives the performance improvements with additional

SBOX resources and rotator/XBOX units. Earlier results suggested that Rijndael and Twofish could

benefit from more rotator and SBOX resources, however, in these experiments they have both saturated

the machine issue resources and thus cannot leverage more resources. Both ciphers are running at nearly 4

IPC in the 4W machine, additional resources are only useful if the microarchitecture can issue more than

4 instruction per cycle.

Finally, the fourth (Opt/8W+) and fifth (Opt/DF) bars show the optimized program performance with

double the execution resources and infinite resources. As with the original code experiments, many of the

cipher kernels are running near dataflow speed. Blowfish, 3DES, Mars, RC6 could not be sped up any

more without reducing the latency of the individual operations. IDEA could benefit only marginally from

addition resources. RC4, Rijndael, and Twofish have plenty of ILP to exploit, more resources improved

their performance. In all cases except RC4, doubling the execution bandwidth exposes all available

parallelism, permitting the ciphers to run at dataflow speed. RC4, on the•other hand, still has a large

supply of untapped ILP.

www.manaraa.com

Lisa Wu Page 42 4/22/01

Section 6.2 Performance Analysis of CryptoManiac

In Figure 17, we show the performance of the four models studied, plus the original Alpha, and two

versions of the ISA extensions studied. A performance metric of megabytes encrypted per second is used

to show the encryption performance of each algorithm. The ISA+ model is a 600MHz Alpha 21264-like

processor with cryptographic instruction set enhancements. The ISA++ model has the same micro-

architecture as the ISA+ model plus four 1k-byte SBOX caches to optimize substitution performance. In

the 4-wide combining (4WC) model, there are four functional units, two multipliers, and support for

instruction combining. All other configurations are derived from this model. The 3WC and 2WC models

reduce the number of functional units to three and two, respectively. These configurations also have two

multipliers each. The 4WNC model has four functional units and two multipliers, and it does not support

instruction combining. In this design, an XOR instruction would take one cycle to execute, as would an

Add instruction. This design benefits from a more efficient register file, since each instruction has only

two input operands.

The encryption rates for the four models we designed are measured using 4K byte sessions with 128

byte blocks. Encryption rates are calculated in MB/s by dividing cycles/byte into the clock period of the

hardware model. As shown in Figure 17, we were able to achieve an encryption rate as high as 64 MB/s

for Rijndael (the new AES standard) which is 2.25 times faster than the 600MHz Alpha 21264

workstation. All kernels except RC4 gained in performance, ranging from 32% to 290% better than the

600MHz Alpha. RC4 is the only kernel that performs worse than the baseline Alpha processor due to

ample aliasing effects described in Section 2. RC4 writes into its key table, creating many ambiguous

Encryption Rates

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Blowfish 3DES IDEA MARS RC4 RC6 Rijndael Twofish

Alpha ISA+ ISA++ 4WC

3WC 2WC 4WNC

OC-12

OC-3

HDTV

T-3

Figure 17. CryptoManiac Encryption Performance.

www.manaraa.com

Lisa Wu Page 43 4/22/01

memory dependencies that lead to poor schedules on the VLIW architecture. Processors that are

dynamically scheduled can run RC4 much faster. Nevertheless, the 4-wide combining CryptoManiac

configuration ran, on average, 1.2 times faster than the Alpha processor. The Alpha processor with ISA

extensions faired much better, out-performing the 4WC CryptoManiac in a few experiments. Keep in

mind that the CryptoManiac design is much more cost-effective than a conventional out-of-order

processor.

The dashed lines in Figure 17 represents various real world performance targets. A low-cost T-3 line

can be saturated at a speed of 5.375 MB/s. A T-3 line is typically installed as a major networking artery

for large corporations and universities with high-volume network traffic. An MPEG-4 HDTV transmits at

8MB/s. HDTV is considered ultra high image compression standard for the telecommunication of digital

TV images and is run in one single session. An OC-3 line has the bandwidth of 19.375 MB/s and an OC-

12 line has the bandwidth of 77.5 MB/s. All of the kernels running on a CryptoManiac can saturate a T-3

line or an MPEG-4 HDTV line. All but two kernels met the bandwidth requirement for an OC-3 line.

Figure 18 illustrates the tradeoff between performance and area for variety of physical designs. We

examined designs from two to eight instructions wide, with and without instruction combining, for the

Rijndael and 3DES ciphers. Parallelism exhibited by each algorithm has a direct effect on the encryption

rate. MARS, RC4, and RC6 benefited little from additional issue bandwidth. These kernels do, however,

run faster with instruction combining. Their performance decreased significantly on the 4-wide non-

combining configuration. Rijndael benefits from additional issue bandwidth; an 8-wide configuration is

Figure 18. Five Design Models and Their Performance/Area Tradeoff
for 3DES and Rijndael.

Performance/Area Tradeoff

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

0.00 500000.001000000.001500000.002000000.002500000.003000000.00

Area (um2)

3DES

Rijndael

4W

2W

3W

4WN

4W3W
2W

4WN

8W

8W

www.manaraa.com

Lisa Wu Page 44 4/22/01

nearly 30% faster than the 4-wide design. Instruction combining appears to be a beneficial feature,

configurations with this capability are more than 10% faster with even smaller increases in area.

Section 6.3 System Analysis of CryptoManiac

There are many potential applications of the CryptoManiac processor. In this section, we examine the

performance of the CryptoManiac processor for two applications: secure web server and disk controller.

We analyze the performance of general purpose and cryptographic processors using I/O trace-based

simulation, measuring the response time for each processor configuration to service requests.

The secure web server experiments were driven by a network traffic trace of the WorldCup 98 official

web server (www.worldcup.com), captured during a one-hour period of extremely high traffic [19].

During this one hour period, there was an average of 1971 requests per second with a total transfer rate of

8.75 MB/sec. Thirty web servers were used to service this traffic, we have assembled all the requests into

a single trace for this experiment. In addition, this traffic was not secure, so we've transformed it into

secure requests by bracketing sessions with an SSL public key authentication [39].

In the network traffic experiments, packets are encrypted and decrypted using Chaining Block Cipher

(CBC) mode, as specified by the IPSEC protocol standard [3]. In this mode of operation, the cipher text

of the previous encrypted block (128 bits for Rijndael, 64 bits for 3DES) is XOR'ed with the plaintext of

the next block before it is encrypted. Chaining blocks increases the strength of cipher algorithms by

reducing correlation between the plaintext and ciphertext, at the expense of parallelism. Packet sizes are

limited to 1500 bytes, as specified by the IPSEC protocol standard.

The secure disk experiments are driven with a trace of accesses to a 9-disk array of 9.1 GB Quantum

Atlas 10K disks [32]. The trace was taken from the DiskSIM disk simulator trace library [14]. During the

trace, the disk is heavily loaded, with an average transfer rate of 16.7 MB/sec. The accesses to all the

disks are combined into a single trace for the purpose of our analyses. Disk blocks are encrypted using

CBC mode encryption in 512 byte encryption units (the minimum disk transfer size).

We examine the performance for single and multiple processor configurations. With multiple

processors, network packets can be processed in parallel if they are from different sessions (i.e., different

connections from different IP addresses). Within a session, cipher block chaining requires that stream

packets be processed serially. For the disk experiments, sector data is processed in chaining block mode,

but different disk sector accesses (a sector is 512 bytes) may be processed in parallel with multiple

CryptoManiac processors.

For all experiments, we only consider the performance of cryptographic processing, all other

processing tasks such as OS, web server, and database operations are assumed to be offloaded to other

processor components. We assume that public key authentication (used once at the beginning of each

session from a unique IP address) is implemented with two dedicated public key processors. Each public

www.manaraa.com

Lisa Wu Page 45 4/22/01

key authentication takes 3.2msec, this timing is based on the performance of the HiFn 6500 public key

processor [17].

Once authentication completes, the private keys and key tables are stored in the keystore for the entire

length of the user session. When a session context is loaded into a processor, for example to process the

first packet or to change the session context of a CryptoManiac processor, we assume that the loading of

context data takes 720ns. This timing is based on a keystore constructed from a 400 MHz RDRAM [27],

which can access key table data in two 40ns accesses (across the rows of 32 banks), plus a 1k byte bus

transfer at 16-bits per 10ns plus bus overheads.

Figure 19 graphs the response time of the Rijndael (right) and 3DES (left) ciphers for the secure web

server (top) and disk controller (bottom) application. For the 3DES experiments we also show the

simulator performance of the HiFn 7751 encryption processor [17]. The 7751 is a high-end encryption

processor used in VPN routers and other high bandwidth secure communication applications. The 7751

includes a hardware implementation of the 3DES algorithm capable of encrypting data at 10.375 MB/sec

(in IPSEC-compatible CBC mode).

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

Alpha 21264
Alpha 21264+

CM

HiFn 7751

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

Alpha 21264

Alpha 21264+

CM

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

Alpha 21264

Alpha 21264+

CM

Hifn 7751

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

Alpha 21264

Alpha 21264+

CM

Figure 19. Average Delay in Processing (usec) vs. Number of Processors. Top two graphs are
network traces, and the bottom two graphs are Disk I/O traces. Left two graphs are for 3DES and
right two graphs are for Rijndael.

www.manaraa.com

Lisa Wu Page 46 4/22/01

As shown in Figure 19, network traffic processing requires more resources than disk I/O processing.

This is due to the fact that network I/O processing a) has less parallelism due to the chaining of packets

within connections, and b) switches contexts often necessitating the extra delay of loading key-specific

data from the keystore. The disk I/O workload, even though at higher sustained bandwidth, operates

within a single context (and thus does not access the keystore). The disk workload also has ample

parallelism, since different disk blocks (512 bytes in size) can be processed in parallel on different CM

processors.

To keep cryptographic processing overheads for network traffic low, say below 5% for a short 40msec

transfer delay, additional transmission delays due to cryptographic processing must be no more than

2msec total, or no more than 1msec (1000usec) on each end of a network transfer. For the 3DES network

I/O experiments, an acceptable level of overhead requires at least three CM processor or three 7751

processors. For the Alpha processor experiments, acceptable network delays (with 3DES) require six

Alpha 21264 processors or four Alpha 21264 processors with cryptographic ISA extensions (labeled

Alpha+). With Rijndael, performance is much better; two processors suffice for all the experiments.

Disk transfers for the Atlas 10K drive average 16msec in length, as a result, overheads can be limited

to 5% if the increase in sector transfer latency is no more than 800ns. The disk I/O experiments cannot

meet this goal for any 3DES configuration examined due to disk block processing delays. Minimum

processing latency was always greater than 800ns. For Rijndael, performance is again much better with

all configurations able to service disk I/O with acceptable delay using only a single processor.

www.manaraa.com

Lisa Wu Page 47 4/22/01

Chapter 7 Related Work

Most published work on cryptographic hardware has focused on public key ciphers. The most

expensive component of these algorithms is modular multiplication of multi-precision (1024-bits or more)

operands. Most high performance algorithms are based on the Montgomery method [28]. There have been

a number of proposals on how to speed this computation in hardware [41, 18, 40, 4], and Intel has

demonstrated that the Merced iA64 processor has particularly good performance for this algorithm [29].

A number of algorithm-specific hardware implementations that have been described are as follows.

IBM’s original DES proposal described a hardware implementation [13]. Shiva [37], IBM [20],

Chrysalis-ITS [8], and Hi/FN [17] all offer high speed hardware implementations of the DES and 3DES

algorithms. Published performance numbers for 3DES on these designs range from 8 MB/s to 58 MB/s.

Our 3DES algorithm on a 1 GHz processor would achieve a performance of 12 MB/s - clearly there

remains value in a hard-ware design for a specific algorithm. The details published on the IBM

implementations [43, 44] are particularly interesting as they highlight other challenges that arise when

developing a cryptographic processor including random number generation and key protection.

Hardware implementations have also been described for IDEA [23], Twofish [35], and Blowfish [33].

The FPGA research community has also shown that public-key cipher algorithm performance can be

improved using FPGA-based implementations [26]. While our approach cannot attain the peak

performance that algorithm-specific hardware implementations can attain, our approach does provide the

advantage of both performance and flexibility. Using a canonical set of symmetric cipher operations we

speed the processing of many algorithms, possibly offering performance improvements for yet-to-be-

developed algorithms. Given the wide variety of algorithms in use today, and the need for servers and

clients to support different ciphers for different applications (or even connections), we feel that there are

benefits to providing instruction set support. We are aware of only one previous proposal to add

instruction set support for secret-key symmetric cryptography. Shi and Lee proposed adding an

instruction (GRP) that supports efficient software implementations of general bit permutation [36]. Their

approach is more efficient than our proposal. For a 32-bit operand they can perform any permutation in 5

instructions, our approach requires 7 instructions. Their approach also scales more favorably to larger

operands. We are currently enhancing our tools to use Shi and Lee’s GRP instruction, however, we expect

the performance impacts of this change to be small as none of our cipher algorithms have general

permutation within their kernel loops. 3DES is the only algorithm that uses general permutations (for the

initial and final permutations).

www.manaraa.com

Lisa Wu Page 49 4/22/01

Chapter 8 Conclusions and Future Work

The growth of the Internet as the primary vehicle for secure communication and electronic commerce

has made efficient cryptographic processing a key factor of good system performance. In this paper, we

demonstrated that a hardware-software co-design provides excellent performance while maintaining the

flexibility to support new algorithms in the field.

To motivate our design, we analyzed the characteristics of eight secret-key cipher kernels. We showed

that they lack branch or memory bottlenecks, have few unknown dependencies, and offer little headroom

for performance improvement on traditional architectures. Given these analyses, we proposed new

instructions that speed the common operations of symmetric ciphers, and efficient hardware that improve

kernel performance. Instruction set support is added for substitutions, permutations, rotates, and modular

multiplication. CryptoManiac is an application-specific co-processor that is a 4-wide VLIW machine. We

then examine their performance on microarchitecture and hardware models of varying cost and

performance. Performance analysis of the optimized benchmarks revealed a 59% speedup over machines

with rotate instructions, and a 74% speedup over machines without rotates for the architectural

extensions. CryptoManiac was able to run Rijndael 2.5 times faster than the Alpha 21264 workstation

with 1/100th area and 1/100th power of the Alpha processor.

We evaluated different design configurations by building detailed hardware models of varied widths

and capabilities. We then calculate encryption rate by synthesizing the models to obtain timing estimates.

Our systematic approach allowed us to study the tradeoffs between chip area and performance. We

showed that the highest-performing and most cost-efficient design is the 4-wide combining configuration.

Rijndael, the new AES standard, runs 2.25 times faster on a 360MHz CryptoManiac. Our analysis of the

original and optimized algorithms suggests that there is more opportunity to speed up cryptographic

processing. We are considering improved functional unit designs as well as more aggressive circuit

implementations.

Our results make a very strong case for the deployment of cryptographic co-processors, however, we

believe the results in this paper have stronger implications for the computer architecture community as a

whole. With an additional 1% area (for an Alpha 21264 design), we were able to affect a 20%

performance improvement over a broad class of cipher algorithms, with individual algorithms benefiting

as much as 190%. This is a striking result considering that many commercial design teams use a rule of

thumb that any optimization that returns 1% performance improvement for 1% area is a good one. This

result is further underscored by the fact that our design is completely synthesized, if the talents of an

experienced design team were marshaled to this task, the resulting design would be smaller, faster and

lower power.

www.manaraa.com

Lisa Wu Page 50 4/22/01

The reason for these striking results is simple - an application specific processor design can achieve a

level of efficiency that is impossible for general purpose designs to attain. Our application specific design

contains none of the baggage necessary to execute non-cryptographic workloads, making the resulting

design smaller and lower power. In addition, our limited application domain creates opportunities to

optimize the implementation, yielding superior performance results. Going forward, we are working to

assess the cost of programmability in the CryptoManiac. A dedicated Rijndael implementation is under

development that will be compared to the design presented in this paper. We are going to show the

comparison between the cost of hardware programmability (FPGA), software programmability

(CryptoManiac), and no programmability (hardware-only version of Rijndael). In addition, we are

developing application specific processors for other application domains. Through this work we hope to

demonstrate that application specific optimization can be a powerful tool for improving system

performance and cost.

www.manaraa.com

Lisa Wu Page 51 4/22/01

References

[1] Advanced EncryptionStandard (AES) Development Effort. US Government, http://csrc.nist.gov/encryption/aes/ .

[2] M. Arlitt and C. Williamson. Web server workload characterization: The search for invariants. Proceedings of the ACM

SIGMETRICS ’96 Conference, April 1996.

[3] R. Atkinson. Security architecture for the internet protocol. IETF Draft Architecture ipsec-arch-sec00, 1996.

[4] T. Blum and C.Paar. Montgomery modular exponentiation on reconfigurable hardware. Proceedings, 14th IEEE Symposium

on Computer Arithmetic, pages 70-77, 1999.

[5] J. Burke, J. McDonald, and T. Austin. Architectural Support for Fast Symmetric-Key Cryptography. Proceedings of

ASPLOS, 2000.

[6] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0. Technical Report CS-TR-97-1342, Unniversity of

Wisconsin, Madison, June 1997.

[7] C. Burnwick and et al. The Mars Encryption Algorithm. IBM, http://csrc.nist.gov/encryption/aes/round2/AESAlgs/MARS ,

1999

[8] Chrysalis-ITS Corporation. http://www.chrysalis-its.com

[9] Compaq Corporation. http://www.research.compaq.com/wrl/techreports/abstracts/93.5.html.

[10] Counterpane Systems. http://www.couterpane.com

[11] CryptSoft Technologies. http://www.cryptsoft.com , 2000.

[12] J. Daemen and V. Rijmen. AES Proposal: Rijndael. http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael , 1999.

[13] D. W. Davis and W. L. Price. Security for Computer Networks. Wiley, 1989.

[14] DiskSIM simulator. http://www.ece.cmu.edu/~ganger/disksim .

[15] P. Fergguson and G. Huston. What is a VPN. http://www.employees.org/ferguson/vpn.pdf , 1998.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Palo Alto, Calif.: Morgan

Kaufmann, 1990.

[17] Hi/Fn Corporation. http://www.hifn.com

[18] J.-H. Hong and C.-W. Wu. Radix-4 modular multiplication and exponentiation algorithms for the RSA public-key

cryptosystem. Design Automation Conference (ASP-DAC 2000), pages 565-570, 2000.

[19] Internet Traffic Archive. http://ita.ee.lbl.gov .

[20] S/390 and OS/390 Cryptography. http://www.s390.ibm.com/security/cryptography.html.

[21] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communication in a Public World. Prentice Hall

PTR, 1995.

[22] J. Keller. A superscalar alpha processor with out-of-order exeecution. 9 th Annual Microprocessor Forum, 1996.

[23] X. Laai. On the Design and Security of Block Ciphers. Hartung-Gorre Veerlag, 1992.

[24] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In 29th International Symposium on

Microarchitecture, December 1996.

[25] M. S. Merkow, CCP, and J. Breithaupt. The Complete Guide to Internet Security. AMACOM, 2000.

http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/MARS
http://www.chrysalis-its.com
http://www.research.compaq.com/wrl/techreports/abstracts/93.5.html
http://www.couterpane.com
http://www.cryptsoft.com
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael
http://www.ece.cmu.edu/~ganger/disksim
http://www.employees.org/ferguson/vpn.pdf
http://www.hifn.com
http://ita.ee.lbl.gov
http://www.s390.ibm.com/security/cryptography.html

www.manaraa.com

Lisa Wu Page 52 4/22/01

[26] U. Meyer-Base and R. Watzel. A comparison of DES and LFSR based FPGA implementable cryptography algorithms. 3rd

International Symposium on Communication Theory and Applications, pages 290-298, 1995.

[27] Micron Corporation. http://www.micro.com/rdram .

[28] P. L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of Computation, 44(170):519-521, April

1985.

[29] Stephen Moore. Enhancing Security Performance Through IA-64 Architecture. Intel Corporation,

http://developer.intel.com/design/security/rsa2000/itanium.pdf , 1999.

[30] An Introduction to Cryptography. Network Associates, Inc., http://www.pgpi.org/doc/pgpintro/ , 1999.

[31] Optimizing Software for the Willamette Architecture. http://developer.intel.com .

[32] Quantum Corporation. http://www.quantum.com.

[33] R. L. Rivest and et al. The RC6 Block Cipher. RSA Security, http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6 .

[34] RSA Security. http://www.rsa.com .

[35] B. Schneier and et al. Twofish: A 128-Bit Block Cipher. Couterpane Systems,

http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Twofish , 1998.

[36] Z. Shi and R. B. Lee. Bit permutation instructions for accelerating software cryptography. Proc. Of the IEEE International

Conference on Application-specific Systems, Architectures and Processors, pages 138-148, 2000.

[37] Shiva Corporation. http://www.shiva.com .

[38] Synopsys. http://www.synopsys.com.

[39] The SSL Protocol, version 3.0. Netscape, Inc., http://home.netscape.com/eng/ssl3/draft302.txt , 1999.

[40] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu. An improved montgomery’s algorithm for high-speed RSA public-key

cryptosystem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(2):280-284, June 1999.

[41] W.-C. Tsai, C.B. Shung, and S.-J. Wang. Two systolic architectures for modular multiplication. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 8(1):103-107, February 2000.

[42] L. Wu, C. Weaver, and T. Austin. CryptoManiac: A fast flexible architecture for secure communication. International

Symposium on Computer Architecture Conference Proceedings, July 2001.

[43] P. C. Yeh and R. M. Smith Sr. ESA/390 integrated cryptographic facility: An overview. IBM Systems Journal, 30(2), 1991.

[44] P.C. Yeh and R. M. Smith Sr. S/390 CMOS cryptographic coprocessor architecture: Overview and design considerations.

IBM Journal of Research and Development, 43(5/6), September 1999.

http://www.micro.com/rdram
http://developer.intel.com/design/security/rsa2000/itanium.pdf
http://www.pgpi.org/doc/pgpintro/
http://developer.intel.com
http://www.quantum.com
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6
http://www.rsa.com
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Twofish
http://www.shiva.com
http://www.synopsys.com
http://home.netscape.com/eng/ssl3/draft302.txt

